Investigation on time-dependent behavior of resistivity in high-resistivity silicon wafers

Materials Science in Semiconductor Processing(2022)

引用 2|浏览13
暂无评分
摘要
As a cornerstone of 5G, high-resistivity silicon on insulator plays an important role in telecommunications. But it is still a great challenge to measure the resistivity of high-resistivity silicon wafer quickly and accurately. Comparing to other methods, four-point probe (4PP) techniques are considered as the preferable approach. The time-dependent behavior of high-resistivity silicon wafer were first observed during 4PP measurement and the variation of chemical elements on the wafer surface was studied by X-ray photoelectron spectrum. The resistivity of P-type silicon decreases with storage time, while that of N-type silicon increases, which can be attributed to the surface energy band bending due to the variation of the interface states during native oxidation on wafer surface. The first-principles calculation was carried out to observe the effect of interface states on the electrical properties. Based on mechanism of time-dependent behavior of high-resistivity silicon, a thermal treatment method was proposed to realize stable resistivity rapidly for high-resistivity silicon wafer.
更多
查看译文
关键词
CZ silicon Wafer,High-resistivity,Four-point probes,Time-dependent,Silicon surface,Energy band,First-principles calculation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要