Hypoxia inhibits the cardiac I-k1 current through SUMO targeting Kir2.1 activation by PIP2

ISCIENCE(2022)

引用 2|浏览9
暂无评分
摘要
Cardiovascular diseases remain the leading cause of death worldwide. Most deaths are sudden and occur secondary to the occlusion of coronary arteries resulting in a rapid decrease in cellular oxygen levels. Acute hypoxia is proarrhythmic, leading to disordered electrical signals, conduction block, and uncoordinated beating of the myocardium. Although acute hypoxia is recognized to perturb the electrophysiology of heart muscle, the mechanistic basis for the effect has remained elusive, hampering the development of targeted therapeutic interventions. Here, we show that acute hypoxia activates the redox-sensitive SUMO pathway in cardiomyocytes, causing 3pid inhibition of the inward-rectifying K+ channel, Kir2.1. We find that SUMOlylation decreases the activation of Kir2.1 channels by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). These data provide a mechanistic basis for the proarrhythmic effects of acute hypoxia and offer a framework for understanding the central role of PIP2 in mediating the sequelae of hypoxia and SUMOylation in cardiovascular disease.
更多
查看译文
关键词
Biological sciences,Cell biology,Molecular biology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要