Resting state electroencephalographic rhythms are affected by immediately preceding memory demands in cognitively unimpaired elderly and patients with mild cognitive impairment

FRONTIERS IN AGING NEUROSCIENCE(2022)

引用 0|浏览6
暂无评分
摘要
Experiments on event-related electroencephalographic oscillations in aged people typically include blocks of cognitive tasks with a few minutes of interval between them. The present exploratory study tested the effect of being engaged on cognitive tasks over the resting state cortical arousal after task completion, and whether it differs according to the level of the participant's cognitive decline. To investigate this issue, we used a local database including data in 30 healthy cognitively unimpaired (CU) persons and 40 matched patients with amnestic mild cognitive impairment (aMCI). They had been involved in 2 memory tasks for about 40 min and underwent resting-state electroencephalographic (rsEEG) recording after 5 min from the task end. eLORETA freeware estimated rsEEG alpha source activity as an index of general cortical arousal. In the CU but not aMCI group, there was a negative correlation between memory tasks performance and posterior rsEEG alpha source activity. The better the memory tasks performance, the lower the posterior alpha activity (i.e., higher cortical arousal). There was also a negative correlation between neuropsychological test scores of global cognitive status and alpha source activity. These results suggest that engagement in memory tasks may perturb background brain arousal for more than 5 min after the tasks end, and that this effect are dependent on participants global cognitive status. Future studies in CU and aMCI groups may cross-validate and extend these results with experiments including (1) rsEEG recordings before memory tasks and (2) post-tasks rsEEG recordings after 5, 15, and 30 min.
更多
查看译文
关键词
resting state EEG power, alpha oscillations, cortical arousal, mild cognitive impairment, cognitive engagement, memory, aging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要