Silica Shell Thickness-Dependent Fluorescence Properties of SiO2@Ag@SiO2@QDs Nanocomposites

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2022)

引用 2|浏览12
暂无评分
摘要
Silica shell coatings, which constitute important technology for nanoparticle (NP) developments, are utilized in many applications. The silica shell's thickness greatly affects distance-dependent optical properties, such as metal-enhanced fluorescence (MEF) and fluorescence quenching in plasmonic nanocomposites. However, the precise control of silica-shell thicknesses has been mainly conducted on single metal NPs, and rarely on complex nanocomposites. In this study, silica shell-coated Ag nanoparticle-assembled silica nanoparticles (SiO2@Ag@SiO2), with finely controlled silica shell thicknesses (4 nm to 38 nm), were prepared, and quantum dots (QDs) were introduced onto SiO2@Ag@SiO2. The dominant effect between plasmonic quenching and MEF was defined depending on the thickness of the silica shell between Ag and QDs. When the distance between Ag NPs to QDs was less than similar to 10 nm, SiO2@Ag@SiO2@QDs showed weaker fluorescence intensities than SiO2@QD (without metal) due to the quenching effect. On the other hand, when the distance between Ag NPs to QDs was from 10 nm to 14 nm, the fluorescence intensity of SiO2@Ag@SiO2@QD was stronger than SiO2@QDs due to MEF. The results provide background knowledge for controlling the thickness of silica shells in metal-containing nanocomposites and facilitate the development of potential applications utilizing the optimal plasmonic phenomenon.
更多
查看译文
关键词
fluorescence,silica shell,fine control,shell thickness,assembled structures,MEF
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要