Grapevine-like high entropy oxide composites boost high-performance lithium sulfur batteries as bifunctional interlayers

GREEN ENERGY & ENVIRONMENT(2024)

引用 1|浏览3
暂无评分
摘要
Lithium-sulfur batteries (LSBs) with high energy densities have been demonstrated the potential for energy-intensive demand applications. However, their commercial applicability is hampered by hysteretic electrode reaction kinetics and the shuttle effect of lithium polysulfides (LiPSs). In this work, an interlayer consisting of high-entropy metal oxide (Cu0.7Fe0.6Mn0.4Ni0.6Sn0.5)O4 grown on carbon nanofibers (HEO/ CNFs) is designed for LSBs. The CNFs with highly porous networks provide transport pathways for Li+ and e-, as well as a physical sieve effect to limit LiPSs crossover. In particular, the grapevine-like HEO nanoparticles generate metal-sulfur bonds with LiPSs, efficiently anchoring active materials. The unique structure and function of the interlayer enable the LSBs with superior electrochemical performance, i.e., the high specific capacity of 1381 mAh g-1 at 0.1 C and 561 mAh g-1 at 6 C. This work presents a facile strategy for exploiting high-performance LSBs. (c) 2022 Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
Electrospun carbon nanofibers,Grapevine-like morphology,Hierarchical physical sieve effect,High-entropy induced chemisorption,Lithium-sulfur,battery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要