谷歌浏览器插件
订阅小程序
在清言上使用

Role of Mechanical Van Der Waals Coupling in the G-Band Splitting of Individual Multiwall Carbon Nanotubes

Journal of physical chemistry C/Journal of physical chemistry C(2022)

引用 1|浏览10
暂无评分
摘要
Characterization of multiwalled carbon nanotubes (MWCNT) by Raman spectroscopy is challenging due to their structural complexity, inhomogeneity, and complicated interlayer van der Waals (vdW) interactions. These latter effects can be however well investigated in individual MWCNTs, prepared by the on-chip purification of arc-discharge (AD) MWCNT powder, combining atomic force microscopy, polarized Raman imaging, and spectroscopy. In this work, we reveal the inhomogeneity of the Raman signal from individual AD-MWCNTs and attribute it to the extraction of inner layers during the sonication stage of the dispersion procedure. We report the splitting of the Raman-active G-band, describing it in terms of the variation of interlayer mechanical vdW coupling as a function of diameter and interlayer distance in the probed AD-MWCNTs. Finally, we present a practical method for investigating the polarization behavior of MWCNTs with a nonuniform Raman response based on Raman mapping and advanced data fitting. Our work gives additional insights into the characterization of structurally nonuniform MWCNTs and allows distinguishing between these MWCNTs and 1D moire crystals based on collapsed SWCNTs or studying telescopic 1D vdW heterostructures with Raman spectroscopy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要