Phased plan for the implementation of the time-resolving magnetic recoil spectrometer on the National Ignition Facility (NIF).

REVIEW OF SCIENTIFIC INSTRUMENTS(2022)

引用 2|浏览19
暂无评分
摘要
The time-resolving magnetic recoil spectrometer (MRSt) is a transformative diagnostic that will be used to measure the time-resolved neutron spectrum from an inertial confinement fusion implosion at the National Ignition Facility (NIF). It uses a CD foil on the outside of the hohlraum to convert fusion neutrons to recoil deuterons. An ion-optical system positioned outside the NIF target chamber energy-disperses and focuses forward-scattered deuterons. A pulse-dilation drift tube (PDDT) subsequently dilates, un-skews, and detects the signal. While the foil and ion-optical system have been designed, the PDDT requires more development before it can be implemented. Therefore, a phased plan is presented that first uses the foil and ion-optical systems with detectors that can be implemented immediately-namely CR-39 and hDISC streak cameras. These detectors will allow the MRSt to be commissioned in an intermediate stage and begin collecting data on a reduced timescale, while the PDDT is developed in parallel. A CR-39 detector will be used in phase 1 for the measurement of the time-integrated neutron spectra with excellent energy-resolution, necessary for the energy calibration of the system. Streak cameras will be used in phase 2 for measurement of the time-resolved spectrum with limited spectral coverage, which is sufficient to diagnose the time-resolved ion temperature. Simulations are presented that predict the performance of the streak camera detector, indicating that it will achieve excellent burn history measurements at current yields, and good time-resolved ion-temperature measurements at yields above 3 × 1017. The PDDT will be used for optimal efficiency and resolution in phase 3.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要