Simultaneous removal of lead, manganese, and copper released from the copper tailings by a novel magnetic modified biosorbent.

Journal of environmental management(2022)

引用 13|浏览4
暂无评分
摘要
Potentially toxic elements including lead (Pb), manganese (Mn), and copper (Cu) released from copper tailings would cause severe long-term environmental risks and potential threats to human health. To prevent these negative effects caused by the release of the metals, a novel magnetic carboxyl groups modified bagasse with high adsorption affinity and strong magnetism was synthesized through an in-situ precipitation method and used to simultaneously remove Pb, Mn, and Cu from the eluate of copper tailings. Results showed that release of Pb, Mn, and Cu from the copper tailings was pH, time, and particle size dependent, and maximum concentrations of them released in the eluate was 1.7, 1.9, and 4.1 mg L-1 under weak acid conditions. Batch adsorption experiment showed that the as-synthesized magnetic modified bagasse could selectively absorb Pb, Mn, and Cu from a complex solution with adsorption capacity of 137.3, 13.1, and 90.0 mg g-1, respectively. X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy-mapping (EDS-mapping) demonstrated that Pb, Mn, and Cu interacted with the magnetic modified biosorbent mainly through coordination and ion exchange. Column experiments showed that higher than 99.5% of the released Pb, Mn, and Cu could be simultaneously removed by the magnetic modified bagasse, and the maximum concentrations of them released in the eluate of the copper tailings were all decreased to lower than 0.01 mg L-1, which reached the discharge standards. After recycled by a magnet, the magnetic modified bagasse could be collected easily and used repeatedly. Because of the high efficiency and easy recovery, the used method had great practical application value in removal of potentially toxic elements released from metallic tailings.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要