FTO/RUNX2 signaling axis promotes cementoblast differentiation under normal and inflammatory condition.

Biochimica et biophysica acta. Molecular cell research(2022)

引用 3|浏览6
暂无评分
摘要
N6-methyladenosine (m6A) is the most prevalent mRNA modification which plays crucial roles in various biological processes, but its role in cementogenesis remains largely unknown. Here, using time-series transcriptomic analysis, we reveal that mRNA m6A demethylase Fat mass and obesity-associated protein (FTO) is involved in cementogenesis. Knocking down FTO decreases cementoblast differentiation and mineralization in both OCCM-30 cellular model and murine ectopic bone formation model. Mechanistically, we find that FTO directly binds Runt-related transcription factor 2 (Runx2) mRNA, an important cementogenesis factor, thus protecting it from YTH domain-containing family protein 2 (YTHDF2) mediated degradation, when cementoblasts are differentiating. Knocking down YTHDF2 restores the expression of Runx2 in FTO-knockdown cells. Moreover, under inflammatory conditions, TNF-α inhibits cementoblast differentiation and mineralization partly through FTO/RUNX2 axis. Collectively, our study reveals an important regulatory role of FTO/RUNX2 axis in normal and pathological cementogenesis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要