谷歌浏览器插件
订阅小程序
在清言上使用

Coherent Optical-Microwave Interface for Manipulation of Low-Field Electronic Clock Transitions in ^171Yb^3+:Y_2sio_5

npj quantum information(2023)

引用 1|浏览21
暂无评分
摘要
The coherent interaction of solid-state spins with both optical and microwave fields provides a platform for a range of quantum technologies, such as quantum sensing, microwave-to-optical quantum transduction and optical quantum memories. Rare-earth ions with electronic spins are interesting in this context. In this work, we use a loop-gap microwave resonator to coherently drive optical and microwave clock transitions simultaneously in a 171 Yb 3+ :Y 2 SiO 5 crystal, achieving a Rabi frequency of 0.56 MHz at 2.497 GHz over a 1-cm long crystal. Furthermore, we provide insights into the spin dephasing at very low fields, showing that superhyperfine-induced collapse of the Hahn echo plays an important role. Our calculations and measurements reveal that the effective magnetic moment can be manipulated in 171 Yb 3+ :Y 2 SiO 5 , which suppresses the superhyperfine interaction at the clock transition. At a doping concentration of 2 ppm and 3.4 K, we achieve spin coherence time of 10.0 ± 0.4 ms.
更多
查看译文
关键词
Quantum optics,Single photons and quantum effects,Physics,general,Quantum Physics,Quantum Information Technology,Spintronics,Quantum Computing,Quantum Field Theories,String Theory,Classical and Quantum Gravitation,Relativity Theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要