谷歌浏览器插件
订阅小程序
在清言上使用

Organic Molecules with Inverted Singlet-Triplet Gaps.

Frontiers in chemistry(2022)

引用 6|浏览8
暂无评分
摘要
According to Hund's multiplicity rule, the energy of the lowest excited triplet state (T1) is always lower than that of the lowest excited singlet state (S1) in organic molecules, resulting in a positive singlet-triplet energy gap (ΔE ST). Therefore, the up-converted reverse intersystem crossing (RISC) from T1 to S1 is an endothermic process, which may lead to the quenching of long-lived triplet excitons in electroluminescence, and subsequently the reduction of device efficiency. Interestingly, organic molecules with inverted singlet-triplet (INVEST) gaps in violation of Hund's multiplicity rule have recently come into the limelight. The unique feature has attracted extensive attention in the fields of organic optoelectronics and photocatalysis over the past few years. For an INVEST molecule possessing a higher T1 with respect to S1, namely a negative ΔE ST, the down-converted RISC from T1 to S1 does not require thermal activation, which is possibly conducive to solving the problems of fast efficiency roll-off and short lifetime of organic light-emitting devices. By virtue of this property, INVEST molecules are recently regarded as a new generation of organic light-emitting materials. In this review, we briefly summarized the significant progress of INVEST molecules in both theoretical calculations and experimental studies, and put forward suggestions and expectations for future research.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要