谷歌浏览器插件
订阅小程序
在清言上使用

Revealing Temperature-Dependent Noise Sources in Aluminum Oxide Josephson Junctions Using Topological Analysis

JOURNAL OF PHYSICAL CHEMISTRY C(2022)

引用 2|浏览2
暂无评分
摘要
Despite many improvements in the quality and reliability of Josephson junctions, the understanding of their noise sources, particularly the effect of oxidation parameters on the atomic arrangement of the interface and barrier layers, remains elusive. Here, we apply a Voronoi tessellation, a geometrically structural and topological analysis, to the amorphous barriers in aluminum oxide junctions. To enable this analysis, we perform million-atom molecular dynamics simulations to develop oxidation models at different temperatures. We find that the temperature introduces noise by changing the atomic compactness of oxides in the junctions. High-temperature oxidation aggravates the structural disorder and surface roughness of the barrier. This work will pave the way for illustrating the microscopic noise origin of amorphous oxides, which can transform our fundamental understanding of materials and decoherence mechanisms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要