Wave runup on composite beaches and dynamic cobble berm revetments

Coastal Engineering(2022)

引用 5|浏览7
暂无评分
摘要
The effects of climate change and sea level rise, combined with overpopulation are leading to ever-increasing stress on coastal regions throughout the world. As a result, there is increased interest in sustainable and adaptable methods of coastal protection. Dynamic cobble berm revetments consist of a gravel berm installed close to the high tide shoreline on a sand beach and are designed to mimic naturally occurring composite beaches (dissipative sandy beaches with a gravel berm around the high tide shoreline). Existing approaches to predict wave runup on sand or pure gravel beaches have very poor skill for composite beaches and this restricts the ability of coastal engineers to assess flood risks at existing sites or design new protection structures. This paper presents high-resolution measurements of wave runup from five field and large-scale laboratory experiments investigating composite beaches and dynamic cobble berm revetments. These data demonstrated that as the swash zone transitions from the fronting sand beach to the gravel berm, the short-wave component of significant swash height rapidly increases and can dominate over the infragravity component. When the berm toe is submerged at high tide, it was found that wave runup is strongly controlled by the water depth at the toe of the gravel berm. This is due to the decoupling of the significant wave height at the berm toe from the offshore wave conditions due to the dissipative nature of the fronting sand beach. This insight, combined with new methods to predict wave setup and infragravity wave dissipation on composite beaches is used to develop the first composite beach/dynamic revetment-specific methodologies for predicting wave runup.
更多
查看译文
关键词
Wave runup,Swash,Dynamic cobble berm revetment,Dynamic revetment,Composite beach,Wave reflection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要