Study on a novel enzymatic colon-targeted particle of total saponins of Pulsatilla by mechanical grinding technology in a solvent free system

Biomedicine & Pharmacotherapy(2022)

引用 2|浏览0
暂无评分
摘要
Oral colon-targeting preparation can achieve targeted drug release in the lesion site and have a great application prospect. In this study, we presented the principle of particle design in the field of materials science into the preparation of colon-targeting preparation. Enzymatic Pulsatilla saponins Colon-targeting composite Microparticles (EPCM) were prepared by mechanical grinding without any organic solvent. Firstly, Response Surface Methodology (RSM) designed by Box-Behnken was used to optimize the preparation process of EPCM, and the structure of EPCM was characterized. All-Atomic and Molecular Dynamics (AAMD) was used to calculate the compatibility between drugs and coating materials before and after release, so as to explain the principle of colon- targeted drug release in this method. Then, colon-targeting characteristics of EPCM in vitro and in vivo were investigated by experiments. Finally, the pharmacodynamics effects of this composite microparticles on Ulcerative Colitis (UC) induced by DSS in C57BL/6 mice were evaluated. The results demonstrated that the colon-targeting composite microparticles could be prepared by mechanical grinding based on particle design principle. The composite microparticles have appropriate colon-targeting drug release performance in vitro and in vivo, and have good anti-ulcerative colitis effect. This study provides a new idea for the preparation of oral colon-targeting preparation of Traditional Chinese medicine, and has evident reference value for the study of coating isolation and powder modification of traditional Chinese medicine for other purposes.
更多
查看译文
关键词
Particle design principle,Enzymatic Pulsatilla saponins Colon- targeted composite Microparticles,All-Atomic and Molecular Dynamics,Colon-targeting characteristics,Pharmacodynamics effects,Ulcerative colitis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要