谷歌浏览器插件
订阅小程序
在清言上使用

Predicting bioconcentration factor and estrogen receptor bioactivity of bisphenol a and its analogues in adult zebrafish by directed message passing neural networks

Environment International(2022)

引用 10|浏览17
暂无评分
摘要
The bioconcentration factor (BCF) is a key parameter for bioavailability assessment of environmental pollutants in regulatory frameworks. The comparative toxicology and mechanism of action of congeners are also of concern. However, there are limitations to acquire them by conducting field and laboratory experiments while machine learning is emerging as a promising predictive tool to fill the gap. In this study, the Direct Message Passing Neural Network (DMPNN) was applied to predict logBCFs of bisphenol A (BPA) and its four analogues (bisphenol AF (BPAF), bisphenol B (BPB), bisphenol F (BPF) and bisphenol S (BPS)). For the test set, the Pearson correlation coefficient (PCC) and mean square error (MSE) were 0.85 and 0.52 respectively, suggesting a good predictive performance. The predicted logBCFs values by the DMPNN ranging from 0.35 (BPS) to 2.14 (BPAF) coincided well with those by the classical EPI Suite (BCFBAF model). Besides, estrogen receptor alpha (ER alpha) bioactivity of these bisphenols was also predicted well by the DMPNN, with a probability of 97.0 % (BPB) to 99.7 % (BPAF), which was validated by the extent of vitellogenin (VTG) induction in male zebrafish as a biomarker except BPS. Thus, with little need for expert knowledge, DMPNN is confirmed to be a useful tool to accurately predict logBCF and screen for estrogenic activity from molecular structures. Moreover, a gender difference was noted in the changes of three endpoints (logBCF, ER binding affinity and VTG levels), the rank order of which was BPAF > BPB > BPA > BPF > BPS consistently, and abnormal amino acid metabolism is featured as an omics signature of abnormal hormone protein expression.
更多
查看译文
关键词
DMPNN,LogBCF,ER?,Bisphenols,Machine learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要