An adaptive wavelet method for nonlinear partial differential equations with applications to dynamic damage modeling

arxiv(2022)

引用 2|浏览2
暂无评分
摘要
Multiscale and multiphysics problems need novel numerical methods in order for them to be solved correctly and predictively. To that end, we develop a wavelet based technique to solve a coupled system of nonlinear partial differential equations (PDEs) while resolving features on a wide range of spatial and temporal scales. The algorithm exploits the multiresolution nature of wavelet basis functions to solve initial-boundary value problems on finite domains with a sparse multiresolution spatial discretization. By leveraging wavelet theory and embedding a predictor-corrector procedure within the time advancement loop, we dynamically adapt the computational grid and maintain accuracy of the solutions of the PDEs as they evolve. Consequently, our method provides high fidelity simulations with significant data compression. We present verification of the algorithm and demonstrate its capabilities by modeling high-strain rate damage nucleation and propagation in nonlinear solids using a novel Eulerian-Lagrangian continuum framework.
更多
查看译文
关键词
Multiresolution analysis,Wavelets,Adaptive algorithm with error control,High-strain rate damage mechanics,High-performance computing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要