On Efficient Online Imitation Learning via Classification

NeurIPS 2022(2022)

引用 1|浏览16
暂无评分
摘要
Imitation learning (IL) is a general learning paradigm for tackling sequential decision-making problems. Interactive imitation learning, where learners can interactively query for expert demonstrations, has been shown to achieve provably superior sample efficiency guarantees compared with its offline counterpart or reinforcement learning. In this work, we study classification-based online imitation learning (abbrev. $\textbf{COIL}$) and the fundamental feasibility to design oracle-efficient regret-minimization algorithms in this setting, with a focus on the general nonrealizable case. We make the following contributions: (1) we show that in the $\textbf{COIL}$ problem, any proper online learning algorithm cannot guarantee a sublinear regret in general; (2) we propose $\textbf{Logger}$, an improper online learning algorithmic framework, that reduces $\textbf{COIL}$ to online linear optimization, by utilizing a new definition of mixed policy class; (3) we design two oracle-efficient algorithms within the $\textbf{Logger}$ framework that enjoy different sample and interaction round complexity tradeoffs, and conduct finite-sample analyses to show their improvements over naive behavior cloning; (4) we show that under the standard complexity-theoretic assumptions, efficient dynamic regret minimization is infeasible in the $\textbf{Logger}$ framework. Our work puts classification-based online imitation learning, an important IL setup, into a firmer foundation.
更多
查看译文
关键词
Imitation Learning,Online Learning,Reinforcement Learning Theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要