Dual-conductive metal-organic framework@MXene heterogeneity stabilizes lithium-ion storage

Journal of Energy Chemistry(2023)

引用 16|浏览12
暂无评分
摘要
Although a few pristine metal-organic frameworks (MOFs) of graphene analogue topology exhibit high intrinsic electrical conductivity, their use in lithium-ion batteries (LIBs) is still hampered by unfavorable Li+ adsorption energy (DEa). In this paper, an electroconductive ferrocene-based MOF@MXene heterostructure is built to provide stable anodes for Li+ storage. Charge density difference and planar average potential charge density show substantial redistribution of charges at the interfaces, transferring from MXene to MOF layers. Moreover, density functional theory (DFT) calculations reveal that the interaction between MXene and MOF significantly increases the DEa. As a result, the heterostructure anode exhibits high capacities and outstanding cycling stability with a capacity retention of 80% after 5000 cycles at 5 A g-1, outperforming mono-component MXene and MOF. Furthermore, the heterostructure anode is built into a full cell with a commercial NCM 532 cathode, delivering a high energy density of 611 Wh kg-1 and power density of 7600 W kg-1. The developed conductive MOF@MXene heterogeneity for improved LIB offers valuable insights into the design of advanced electrode materials for energy storage. (c) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
更多
查看译文
关键词
MXene,Metal -organic framework,Heterostructure,Lithium -ion battery,Adsorption energy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要