Euclid preparation: XXII. Selection of Quiescent Galaxies from Mock Photometry using Machine Learning

Euclid Collaboration,A. Humphrey,L. Bisigello, P. A. C. Cunha,M. Bolzonella,S. Fotopoulou,K. Caputi,C. Tortora, G. Zamorani,P. Papaderos,D. Vergani,J. Brinchmann,M. Moresco,A. Amara,N. Auricchio,M. Baldi,R. Bender, D. Bonino,E. Branchini,M. Brescia,S. Camera, V. Capobianco,C. Carbone,J. Carretero,F. J. Castander, M. Castellano,S. Cavuoti, A. Cimatti, R. Cledassou,G. Congedo, C. J. Conselice, L. Conversi,Y. Copin,L. Corcione,F. Courbin, M. Cropper,A. Da Silva,H. Degaudenzi, M. Douspis, F. Dubath, C. A. J. Duncan,X. Dupac,S. Dusini,S. Farrens, S. Ferriol,M. Frailis, E. Franceschi, M. Fumana, P. Gomez-Alvarez,S. Galeotta,B. Garilli, W. Gillard, B. Gillis,C. Giocoli,A. Grazian, F. Grupp,L. Guzzo, S. V. H. Haugan,W. Holmes, F. Hormuth,K. Jahnke,M. Kummel, S. Kermiche, A. Kiessling,M. Kilbinger,T. Kitching,R. Kohley,M. Kunz,H. Kurki-Suonio,S. Ligori, P. B. Lilje,I. Lloro, E. Maiorano,O. Mansutti,O. Marggraf,K. Markovic,F. Marulli,R. Massey, S. Maurogordato,H. J. McCracken, E. Medinaceli,M. Melchior,M. Meneghetti,E. Merlin,G. Meylan,L. Moscardini, E. Munari, R. Nakajima, S. M. Niemi,J. Nightingale,C. Padilla,S. Paltani, F. Pasian, K. Pedersen,V. Pettorino,S. Pires, M. Poncet, L. Popa,L. Pozzetti, F. Raison,A. Renzi,J. Rhodes,G. Riccio, E. Romelli,M. Roncarelli, E. Rossetti, R. Saglia,D. Sapone,B. Sartoris,R. Scaramella,P. Schneider,M. Scodeggio, A. Secroun,G. Seidel,C. Sirignano, G. Sirri,L. Stanco, P. Tallada-Crespi, D. Tavagnacco, A. N. Taylor,I. Tereno, R. Toledo-Moreo, F. Torradeflot,I. Tutusaus, L. Valenziano,T. Vassallo, Y. Wang,J. Weller,A. Zacchei, J. Zoubian,S. Andreon,S. Bardelli,A. Boucaud,R. Farinelli, J. Gracia-Carpio, D. Maino,N. Mauri,S. Mei, N. Morisset,F. Sureau,M. Tenti,A. Tramacere, E. Zucca,C. Baccigalupi, A. Balaguera-Antolinez, A. Biviano,A. Blanchard,S. Borgani,E. Bozzo, C. Burigana,R. Cabanac,A. Cappi, C. S. Carvalho,S. Casas,G. Castignani, C. Colodro-Conde,A. R. Cooray,J. Coupon,H. M. Courtois, O. Cucciati,S. Davini,G. De Lucia,H. Dole,J. A. Escartin,S. Escoffier, M. Fabricius,M. Farina,F. Finelli, K. Ganga, J. Garcia-Bellido,K. George, F. Giacomini,G. Gozaliasl,I. Hook,M. Huertas-Company,B. Joachimi,V. Kansal, A. Kashlinsky,E. Keihanen, C. C. Kirkpatrick,V. Lindholm, G. Mainetti,R. Maoli,S. Marcin,M. Martinelli,N. Martinet, M. Maturi,R. B. Metcalf, G. Morgante,A. A. Nucita,L. Patrizii,A. Peel, J. E. Pollack, V. Popa,C. Porciani,D. Potter,P. Reimberg,A. G. Sanchez, M. Schirmer,M. Schultheis,V. Scottez,E. Sefusatti,J. Stadel,R. Teyssier, C. Valieri,J. Valiviita,M. Viel,F. Calura,H. Hildebrandt

arxiv(2022)

引用 0|浏览50
暂无评分
摘要
The Euclid Space Telescope will provide deep imaging at optical and near-infrared wavelengths, along with slitless near-infrared spectroscopy, across ~15,000 sq deg of the sky. Euclid is expected to detect ~12 billion astronomical sources, facilitating new insights into cosmology, galaxy evolution, and various other topics. To optimally exploit the expected very large data set, there is the need to develop appropriate methods and software. Here we present a novel machine-learning based methodology for selection of quiescent galaxies using broad-band Euclid I_E, Y_E, J_E, H_E photometry, in combination with multiwavelength photometry from other surveys. The ARIADNE pipeline uses meta-learning to fuse decision-tree ensembles, nearest-neighbours, and deep-learning methods into a single classifier that yields significantly higher accuracy than any of the individual learning methods separately. The pipeline has `sparsity-awareness', so that missing photometry values are still informative for the classification. Our pipeline derives photometric redshifts for galaxies selected as quiescent, aided by the `pseudo-labelling' semi-supervised method. After application of the outlier filter, our pipeline achieves a normalized mean absolute deviation of ~< 0.03 and a fraction of catastrophic outliers of ~< 0.02 when measured against the COSMOS2015 photometric redshifts. We apply our classification pipeline to mock galaxy photometry catalogues corresponding to three main scenarios: (i) Euclid Deep Survey with ancillary ugriz, WISE, and radio data; (ii) Euclid Wide Survey with ancillary ugriz, WISE, and radio data; (iii) Euclid Wide Survey only. Our classification pipeline outperforms UVJ selection, in addition to the Euclid I_E-Y_E, J_E-H_E and u-I_E,I_E-J_E colour-colour methods, with improvements in completeness and the F1-score of up to a factor of 2. (Abridged)
更多
查看译文
关键词
galaxies: photometry, galaxies: high-redshift, galaxies: evolution, galaxies: general, methods: statistical
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要