Elucidating the negatively influential and potentially toxic mechanism of single and combined micro-sized polyethylene and petroleum to Chlorella vulgaris at the cellular and molecular levels

Ecotoxicology and Environmental Safety(2022)

引用 9|浏览1
暂无评分
摘要
Although microplastics (MPs; <5 mm) may interact with co-contaminants (e.g., petroleum) in marine aquatic systems, little is known about their combined toxicity. Therefore, this study explored the toxicities and their mechanisms of micro-sized polyethylene (mPE) and their combination with petroleum to Chlorella vulgaris. The single MPs at various particle sizes, concentrations, and aging degree, single petroleum, and their combinations, were found to pose toxicities to C. vulgaris. This study also found the microcosm's microbial diversity changed. The microbial communities in the C. vulgaris biotopes were altered under exposure to mPE and petroleum, and were disturbed by external factors such as MPs particle size, concentration, aging time, and the combination with petroleum. Furthermore, as compared with the toxicity of petroleum on microalgal transcriptional function, mPE caused less toxic to C. vulgaris, and only impact the posttranslational modification, protein turnover, and signal transduction processes. Most importantly, mPE reduced petroleum toxicity in C. vulgaris via regulating the ABC transporter, eukaryotic ribosome synthesis, and the citrate cycle metabolic pathways. Overall, our findings could fundamentally provide insights into the joint ecotoxicological effects of MPs and petroleum, and highlight the potential risks of co-exsiting pollutants.
更多
查看译文
关键词
Microplastics,Petroleum,Chlorella vulgaris,Toxicological effects
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要