Comparative study of neuropeptide signaling systems in Hemiptera.

Insect science(2022)

引用 0|浏览7
暂无评分
摘要
Numerous physiological processes in insects are tightly regulated by neuropeptides and their receptors. Although they form an ancient signaling system, there is still a great deal of variety in neuropeptides and their receptors among different species within the same order. Neuropeptides and their receptors have been documented in many hemipteran insects, but the differences among them have been poorly characterized. Commercial grapevines worldwide are plagued by the bug Daktulosphaira vitifoliae (Hemiptera: Sternorrhyncha). Here, 33 neuropeptide precursors and 48 putative neuropeptide G protein-coupled receptor (GPCR) genes were identified in D. vitifoliae. Their expression profiles at the probe and feeding stages reflected potential regulatory roles in probe behavior. By comparison, we found that the Releasing Hormone-Related Peptides (GnRHs) system of Sternorrhyncha was differentiated from those of the other 2 suborders in Hemiptera. Independent secondary losses of the adipokinetic hormone/corazonin-related peptide receptor (ACP) and corazonin (CRZ) occurred during the evolution of Sternorrhyncha. Additionally, we discovered that the neuropeptide signaling systems of Sternorrhyncha were very different from those of Heteroptera and Auchenorrhyncha, which was consistent with Sternorrhyncha's phylogenetic position at the base of the order. This research provides more knowledge on neuropeptide systems and sets the groundwork for the creation of novel D. vitifoliae management strategies that specifically target these signaling pathways.
更多
查看译文
关键词
D. vitifoliae,GPCR,Hemiptera,neuropeptide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要