Low-Frequency Quantum Sensing

PHYSICAL REVIEW APPLIED(2022)

引用 2|浏览24
暂无评分
摘要
Exquisite sensitivities are a prominent advantage of quantum sensors. Ramsey sequences allow precise measurement of direct current fields, while Hahn-echo-like sequences measure alternating current fields. However, the latter are restrained for use with high-frequency fields (above approximately 1 kHz) due to finite coherence times, leaving less-sensitive noncoherent methods for the low-frequency range. In this paper, we propose to bridge the gap with a fitting-based algorithm with a frequency-independent sensitivity to coherently measure low-frequency fields. As the algorithm benefits from coherence-based measurements, its demonstration with a single nitrogen-vacancy center gives a sensitivity of 9.4 nT Hz(-0.5) for frequencies below about 0.6 kHz down to near-constant fields. To inspect the potential in various scenarios, we apply the algorithm at a background field of tens of nTs, and we measure low-frequency signals via synchronization.
更多
查看译文
关键词
quantum,low-frequency low-frequency
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要