Estimation of Pulmonary Arterial Pressure Using Simulated Non-Invasive Measurements and Gradient-Based Optimization Techniques

Mathematical and Computational Applications(2022)

引用 2|浏览2
暂无评分
摘要
Reliable quantification of pulmonary arterial pressure is essential in the diagnostic and prognostic assessment of a range of cardiovascular pathologies, including rheumatic heart disease, yet an accurate and routinely available method for its quantification remains elusive. This work proposes an approach to infer pulmonary arterial pressure based on scientific machine learning techniques and non-invasive, clinically available measurements. A 0D multicompartment model of the cardiovascular system was optimized using several optimization algorithms subject to forward-mode automatic differentiation. Measurement data were synthesized from known parameters to represent the healthy, mitral regurgitant, aortic stenosed, and combined valvular disease situations with and without pulmonary hypertension. Eleven model parameters were selected for optimization based on 95% explained variation in mean pulmonary arterial pressure. A hybrid Adam and limited-memory Broyden–Fletcher–Goldfarb–Shanno optimizer yielded the best results with input data including valvular flow rates, heart chamber volume changes, and systematic arterial pressure. Mean absolute percentage errors ranged from 1.8% to 3.78% over the simulated test cases. The model was able to capture pressure dynamics under hypertensive conditions with pulmonary arterial systole, diastole, and mean pressure average percentage errors of 1.12%, 2.49%, and 2.14%, respectively. The low errors highlight the potential of the proposed model to determine pulmonary pressure for diseased heart valves and pulmonary hypertensive conditions.
更多
查看译文
关键词
cardiovascular 0D model,pulmonary arterial pressure,gradient-based optimization,automatic differentiation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要