PD-1 -cis IL-2R agonism yields better effectors from stem-like CD8 + T cells

Nature(2022)

引用 86|浏览25
暂无评分
摘要
Expansion and differentiation of antigen-experienced PD-1 + TCF-1 + stem-like CD8 + T cells into effector cells is critical for the success of immunotherapies based on PD-1 blockade 1 – 4 . Hashimoto et al. have shown that, in chronic infections, administration of the cytokine interleukin (IL)-2 triggers an alternative differentiation path of stem-like T cells towards a distinct population of ‘better effector’ CD8 + T cells similar to those generated in an acute infection 5 . IL-2 binding to the IL-2 receptor α-chain (CD25) was essential in triggering this alternative differentiation path and expanding better effectors with distinct transcriptional and epigenetic profiles. However, constitutive expression of CD25 on regulatory T cells and some endothelial cells also contributes to unwanted systemic effects from IL-2 therapy. Therefore, engineered IL-2 receptor β- and γ-chain (IL-2Rβγ)-biased agonists are currently being developed 6 – 10 . Here we show that IL-2Rβγ-biased agonists are unable to preferentially expand better effector T cells in cancer models and describe PD1-IL2v, a new immunocytokine that overcomes the need for CD25 binding by docking in cis to PD-1. Cis binding of PD1-IL2v to PD-1 and IL-2Rβγ on the same cell recovers the ability to differentiate stem-like CD8 + T cells into better effectors in the absence of CD25 binding in both chronic infection and cancer models and provides superior efficacy. By contrast, PD-1- or PD-L1-blocking antibodies alone, or their combination with clinically relevant doses of non-PD-1-targeted IL2v, cannot expand this unique subset of better effector T cells and instead lead to the accumulation of terminally differentiated, exhausted T cells. These findings provide the basis for the development of a new generation of PD-1 cis -targeted IL-2R agonists with enhanced therapeutic potential for the treatment of cancer and chronic infections.
更多
查看译文
关键词
Cancer immunotherapy,Infection,Interleukins,Preclinical research,Tumour immunology,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要