Bio-inspired engineered ferritin-albumin nanocomplexes for targeted ferroptosis therapy

Journal of Controlled Release(2022)

引用 5|浏览3
暂无评分
摘要
Nanotechnology-enabled ferroptosis therapy is an emerging paradigm for tumor treatment, but amplifying ferroptotic damage in tumor cells in a safe and selective manner is still challenging, which severely hinders its clinical translation. In this study, we constructed a bio-inspired protein nanocomplex based on natural-occurring bovine serum albumin (BSA) and ferritin for efficient tumor elimination via cooperatively enhanced ferroptosis therapy. The long-circulating BSA molecules provided multiple anchoring points for the efficient loading of the GPX4-inhibiting ferroptosis inducer (1S, 3R) RAS-selective lethal 3 (RSL3), which was further complexed with ferritin via acidity-responsive glutaraldehyde linkers. The ferritin moieties may not only bind to transferrin receptor 1 overexpressed on tumor cell membrane for targeted endocytic uptake but also be degraded in lysosomes to induce iron overload, which could substantially promote the lipid peroxidation in tumor cells and cooperate with the glutathione peroxidase 4 (GPX4)-inhibiting capability of RSL3 to induce pronounced ferroptosis. The in vitro and in vivo results collectively demonstrated that the albumin-ferritin-based nanocomplex could present superior antitumor effects with no obvious adverse effects, which may open new avenues for the clinical translation of ferroptosis-dependent therapeutic modalities.
更多
查看译文
关键词
Bioinspired protein nanocomplexes,Targeted drug delivery,Ferroptosis,Cooperative tumor therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要