(Invited) Recent Progress in Wide-Bandgap Semiconductor Devices for a More Electric Future

ECS Transactions(2022)

引用 2|浏览2
暂无评分
摘要
Wide-bandgap (WBG) semiconductors, with their excellent electrical properties, offer breakthrough performance in power electronics enabling low losses, high switching frequencies, and high temperature operation. WBG semiconductors, such as silicon carbide and gallium nitride, are likely candidates to replace silicon in the near future for high power applications as silicon is fast approaching its performance limits. Wide-bandgap power semiconductor devices enable breakthrough circuit performance and energy efficiency gains in a wide range of potential applications. The U.S. Department of Energy’s Advanced Research Project Agency - Energy (ARPA-E) has invested in WBG semiconductors over the past ten years targeting the barriers to widespread adoption of WBGs in power electronics including material and device development. Under ARPA-E projects, medium voltage (10-20kV) WBG device development has commenced to push the voltage boundaries of WBGs. This includes super-junction devices and light triggered photoconductive devices for MV applications. The WBG MV devices will enable MVDC grid distribution applicable to markets including electrified transportation, renewable interconnections, and offshore oil, gas, and wind production. Advanced WBG device ideas are additionally being explored including 3D device structures, WBG integrated circuits, and neutron detectors The progress and challenges of the WBG devices being developed under ARPA-E programs will be reviewed along with thoughts on the future trends of WBG device development.
更多
查看译文
关键词
semiconductor devices,electric future,wide-bandgap
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要