NUA and ESD4 negatively regulate ABA signaling during seed germination

Stress Biology(2022)

引用 0|浏览0
暂无评分
摘要
The phytohormone abscisic acid (ABA) plays important roles in plant growth, development and adaptative responses to abiotic stresses. SNF1-related protein kinase 2s (SnRK2) are key components that activate the ABA core signaling pathway. NUCLEAR PORE ANCHOR (NUA) is a component of the nuclear pore complex (NPC) that involves in deSUMOylation through physically interacting with the EARLY IN SHORT DAYS 4 (ESD4) SUMO protease. However, it is not clear how NUA functions with SnRK2 and ESD4 to regulate ABA signaling. In our study, we found that nua loss-of-function mutants exhibited pleiotropic ABA-hypersensitive phenotype. We also found that ABA-responsive genes remarkably up-regulated in nua by exogenous ABA. The nua snrk2.2 snrk2.3 triple mutant and nua abi5 double mutant partially rescued the ABA-hypersensitive phenotype of nua, thereby suggesting that NUA is epistatic to SnRK2s. Additionally, we observed that esd4-3 mutant was also ABA-hypersensitive. NUA and ESD4 were further demonstrated to physically interact with SnRK2s and negatively regulate ABA signaling by reducing SnRK2s stability. Taken together, our findings uncover a new regulatory mechanism that can modulate ABA signaling.
更多
查看译文
关键词
ABA signaling,SnRK2,SUMOylation,NUA,ESD4
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要