谷歌浏览器插件
订阅小程序
在清言上使用

Numerical Simulations of Tidal Deformation and Resulting Light Curves of Small Bodies: Material Constraints of 99942 Apophis and 1I/‘oumuamua

˜The œplanetary science journal(2023)

引用 3|浏览24
暂无评分
摘要
In this paper, we present an open-source software (Simulator of Asteroid Malformation Under Stress, SAMUS) that simulates constant-density, constant-viscosity liquid bodies subject to tidal forces for a range of assumed viscosities and sizes. This software solves the Navier–Stokes equations on a finite-element mesh, incorporating the centrifugal, Coriolis, self-gravitational, and tidal forces. The primary functionality is to simulate the deformation of minor bodies under the influence of tidal forces. It may therefore be used to constrain the composition and physical structure of bodies experiencing significant tidal forces, such as 99942 Apophis and 1I/‘Oumuamua. We demonstrate that SAMUS will be useful to constrain the material properties of Apophis during its near-Earth flyby in 2029. Depending on the material properties, Apophis may experience an area change of up to 0.5%, with similar effects on the photometric brightness. We also apply SAMUS to constrain the material dynamic viscosity of 1I/‘Oumuamua, the first interstellar object discovered traversing the inner solar system. ‘Oumuamua experienced a close approach to the Sun at perihelion (q ≃ 0.25 au) during which there were significant tidal forces that may have caused deformation of the body. This deformation could have lead to observable changes in the photometric light curve based on the material properties. The application of SAMUS to produce synthetic observations which incorporate tidal deformation effects demonstrates that no deformation—an infinite dynamic viscosity—best reproduces the photometric data. While these results indicate that ‘Oumuamua did not experience significant tidal deformation, a sophisticated model incorporating nonprincipal axis rotation is necessary to conclusively analyze both ‘Oumuamua and Apophis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要