Dual light-responsive cellulose nanofibril-based in situ hydrogel for drug-resistant bacteria infected wound healing.

Carbohydrate polymers(2022)

引用 19|浏览4
暂无评分
摘要
In situ hydrogels with rapid hemostasis and antibacterial activity have received considerable attention in the field of wound healing. Herein, a white light and NIR dual light-responsive cellulose nanofibril (CNF)-based in situ hydrogel wound dressing is tailored by using white light-responsive CNF and endogenous antibacterial CNF as the skeleton, Prussian blue nanoparticles, Pluronic® F127 and hydroxypropyl methyl cellulose as the NIR, temperature-responsive switch and binder, respectively. The dressing exhibits rapid hemostasis properties in rat liver injury model with low blood loss of 286.4 mg and short hemostasis time of 63 s. Meanwhile, the antibacterial activity of the dressing with white and NIR irradiation against Escherichia coli, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) is higher than 99.9 %. Interestingly, the dressing with biocompatibility can promote MRSA infection wound healing and can be removed on demand without secondary injury to skin. Therefore, it has promising applications for first-aid hemostasis and wound healing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要