TMN4 complex embedded graphene as bifunctional electrocatalysts for high efficiency OER/ORR

Journal of Energy Chemistry(2021)

引用 0|浏览0
暂无评分
摘要
Developing highly active bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is of great significance in energy conversion and storage technologies. In this study, we systematically investigated the OER/ORR electrocatalytic activity of TMN4@G system by using density functional theory (DFT) calculations. Globally, IrN4@G is a very promising bifunctional catalyst for both OER and ORR with the extremely low overpotentials of 0.30 and 0.26 V, respectively. Such outstanding electrocatalytic performance is mainly attributed to the synergistic effect of Ir and N. More importantly, by constructing 2D activity volcano plots, we obtained the limiting overpotentials of TMN4@G system with the values of 0.26 V for OER and 0.24 V for ORR. These findings open up new opportunities for further exploring graphene-based materials for highly efficient OER/ORR electrocatalysts.
更多
查看译文
关键词
N-doped graphene,Transition Metal-N4 cluster,First-principles calculations,Oxygen evolution reaction,Oxygen reduction reaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要