All Solution-Processed Inorganic, Multilevel Memristors Utilizing Liquid Metals Electrodes Suitable for Analog Computing

ACS Omega(2022)

引用 2|浏览13
暂无评分
摘要
Herein, we report a solution-processable memristive device based on bismuth vanadate (BiVO4) and titanium dioxide (TiO2) with gallium-based eutectic gallium-indium (EGaIn) and gallium-indium-tin alloy (GaInSn) liquid metal as the top electrode. Scanning electron microscopy (SEM) shows the formation of a nonporous structure of BiVO4 and TiO2 for efficient resistive switching. Additionally, the gallium-based liquid metal (GLM)contacted memristors exhibit stable memristor behavior over a wide temperature range from -10 to +90 degrees C. Gallium atoms in the liquid metal play an important role in the conductive filament formation as well as the device's operation stability as elucidated by I-V characteristics. The synaptic behavior of the GLM-memristors was characterized, with excellent long-term potentiation (LTP) and longterm depression (LTD) linearity. Using the performance of our device in a multilayer perceptron (MLP) network, a similar to 90% accuracy in the handwriting recognition of modified national institute of standards and technology database (MNIST) was achieved. Our findings pave a path for solution-processed/GLM-based memristors which can be used in neuromorphic applications on flexible substrates in a harsh environment.
更多
查看译文
关键词
multilevel memristors,liquid metals electrodes suitable,inorganic,solution-processed
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要