Coordinated pattern of multiple element variability in Aegiceras corniculatum propagule in shrimp aquaculture effluent habitats.

The Science of the total environment(2022)

引用 0|浏览2
暂无评分
摘要
Human activities and environment changes have changed river estuary ecosystems, which impacts element changes in coastal sediments and mangroves. Mangrove propagule chemical traits showed a systematic shift along environmental gradients. But knowledge about how the pattern of multi-element variability is coordinated in propagule remains limited, and the conservation of macro and trace elements in propagules is also unknown. In this study, the concentrations, variability and coordinated pattern variation of 13 elements in Aegiceras corniculatum propagule across shrimp aquaculture effluent habitats, as well as the relationship between propagule element and environment factors were explored. We used CV to quantify the variability of each element, and then explore the pattern of multi-element variability. The results showed that: (1) in the habitats affected by shrimp aquaculture, the elements content shows: C > K > Cl > N > Na > P > S > Mg > Ca > Fe > Mn > Zn > Cu, and the coefficient variation shows: Mn > Cu > Fe > Zn > S > N > P > Cl > Na > K > Mg > Ca > C, which means that the element concentration are negatively correlated with the element variability and the variability of macro-elements was more conservative than micro-elements in these habitats; (2) pH, OM, C:P, and SiO32- were the four important environmental factors explaining the A. corniculatum propagule variation. In conclusion, effluent from shrimp aquaculture does affect the coordinated pattern of multiple element variability in A. corniculatum propagules. These results provide a strong evidence for assessing the impact of shrimp aquaculture effluent discharges on mangrove and provide an important theoretical basis for mangrove conservation and restoration.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要