谷歌浏览器插件
订阅小程序
在清言上使用

Trace Co Coupled and Tourmaline Doped G-C3n4 for Visible-Light Synergistic Persulfate System for Degradation of Perfluorooctanoic Acid

Journal of cleaner production(2022)

引用 9|浏览23
暂无评分
摘要
Removal of perfluorinated compounds (PFCs) from the environment is a major challenge due to their refractory, persistent and bioaccumulative properties. In this study, trace Co coupled via Co-P coordination and tourmaline (TM) doped g-C3N4 was fabricated (marked as Co/TM/g-C3N4) and used as the catalyst for activating peroxymonosulfate (PMS) to remove emerging PFOA under visible light irradiation. Several affecting parameters were systematically investigated, inlcuding Co/TM/g-C3N4 dosage, PMS concentration, initial pH, as well as coexisting Cl-, HCO3-, H2PO4-, NO3- and humic acid. Under the conditions of 0.5 g/L Co/TM/g-C3N4, 2.5 g/L PMS and pH 3.0, the developed synergistic system had the ability for 81.11% removal of PFOA within 4 h, 67.64% removal after the fourth run, and also could be effectively applied in actual water bodies. During the degradation process, pi-pi*, N-C=N and graphite N played the vital role, with the final defluorination rate of 31.12% at 4 h. Free radical quenching and quantitative analysis, as well as electron paramagnetic resonance was used to verify the free radical and non-free radical pathways for PFOA removal, with the findings that SO4?(center dot-) (2.61 mu M at 1 h), center dot OH (0.067 mu M at 4 h), O-2(center dot-), h(+), and O-1(2) were involved with possible time-dependent. By liquid chromatography-mass spectrometry analysis, the short-chain intermediates of C3-C7 were proposed and identified. From this study, trace Co coupled and TM doped g-C3N4 demonstrated higher catalytic potential to activate PMS for visible-light synergistic PFOA removal, with the expectation of achieving a cleaner water environment for human beings.
更多
查看译文
关键词
Tourmaline,Graphite carbon nitride,PFOA,Degradation,Persulfate,Visible light
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要