Ultrafast modulation of terahertz waves using on-chip dual-layer near-field coupling

Optica(2022)

引用 1|浏览7
暂无评分
摘要
As a key potential component of future sixth-generation (6G) communication systems, terahertz (THz) technology has received much attention in recent years. However, a lack of effective high-speed direct modulation of THz waves has limited the development of THz communication technology. Currently, most high-speed modulators are based on photonic systems that can modulate electromagnetic waves with high speed using sophisticated optoelectronic conversion techniques. Yet, they usually suffer from low conversion efficiency of light to the THz range, resulting in low output power of the modulated THz waves. Here, we describe a guided-wave modulator for THz signals whose performance nearly matches that of existing in-line fiber-optic modulators. Our results demonstrate a maximum modulation depth greater than 20 dB (99%) and a maximum sinusoidal modulation speed of more than 30 GHz, with an insertion loss around 7 dB. We demonstrate the capabilities of this modulator in a point-to-point communication link with a 25 Gbit/s modulation speed. Our modulator design, based on near-field coupling of a THz transmission line to a single resonant meta-element, represents a powerful improvement for on-chip integrated high-performance THz devices. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要