Development of quantitative wastewater surveillance models facilitated the precise epidemic management of COVID-19

SCIENCE OF THE TOTAL ENVIRONMENT(2023)

引用 4|浏览2
暂无评分
摘要
Wastewater surveillance serves as a promising approach to elucidate the silent transmission of SARS-CoV-2 in commu-nities. To understand the decay of the coronavirus in sewage pipes, the decay of the coronavirus traveling over 20 km distance of pipeline was analyzed. Based on the decay model, a WWTP and a community model were then proposed for predicting COVID-19 cases in Xi'an and Nanchang city during the COVID-19 outbreak in 2021 and 2022. The results suggested that Monte Carol simulations estimated 23.3, 50.1, 127.3 and 524.2 infected persons in the Yanta district of Xi'an city on December 14th, 18th, 22nd and 26th of 2021, respectively, which is largely consistent with the clinical reports. Next, we further conducted wastewater surveillance in two WWTPs that covered the whole metropolitan re-gion in Nanchang to validate the robustness of the WWTP model from December 2021 to April 2022. SARS-CoV-2 sig-nals were detected in two WWTPs from March 15th to April 5th. Predicted infection numbers were in agreement with the actual infection cases, which promoted precise epidemic control. Finally, community wastewater surveillance was conducted for 40 communities that were not 100 % covered by massive nucleic acid testing in Nanchang city, which accurately identified the SARS-CoV-2 carriers not detected by massive nucleic acid testing. In conclusion, accurate pre-diction of COVID-19 cases based on WWTP and community models promoted precise epidemic control. This work highlights the viability of wastewater surveillance for outbreak evaluation and identification of hidden cases, which provides an extraordinary example for implementing precise epidemic control of COVID-19.
更多
查看译文
关键词
SARS-CoV-2,WWTPs,Wastewater surveillance,Decay,Monte Carol simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要