Prenatal reduction of E14.5 embryonically fate‐mapped pyramidal neurons in a mouse model of autism

European Journal of Neuroscience(2022)

引用 2|浏览0
暂无评分
摘要
Although several observations suggest that the constitutive biological, genetic or physiological changes leading to autism spectrum disorders (ASD) start in utero, their early impact on the number and density of neurons in the brain remains unknown. Using genetic fate mapping associated with the immunollabeling-enabled three-dimensional imaging of solvent-cleared organs (iDISCO) clearing method we identified and counted a selective population of neocortical and hippocampal pyramidal neurons in the in utero valproate (VPA) mouse model of autism. We report that 1 day before birth, the number of pyramidal neurons born at E14.5 in the neocortex and hippocampus of VPA mice is smaller than in age-matched controls. VPA also induced a reduction of the neocortical-but not hippocampal-volume 1 day before birth. Interestingly, VPA mice present an increase in both neocortical and hippocampal volumes 2 days after birth compared with controls. These results suggest that the VPA-exposed hippocampus and neocortex differ substantially from controls during the highly complex perinatal period, and specially 1 day before birth, reflecting the early pathogenesis of ASD.
更多
查看译文
关键词
autism spectrum disorders,birth,fate mapping,glutamatergic neurons,iDISCO clearing method,valproate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要