谷歌浏览器插件
订阅小程序
在清言上使用

Crystal Plasticity Modeling of Strain-Induced Martensitic Transformations to Predict Strain Rate and Temperature Sensitive Behavior of 304 L Steels: Applications to Tension, Compression, Torsion, and Impact

International journal of plasticity(2022)

引用 22|浏览24
暂无评分
摘要
This paper advances crystallographically-based Olson-Cohen (direct gamma -> alpha) and deformation mechanism (indirect gamma ->epsilon ->alpha') phase transformation models for predicting strain-induced austenite to martensite transformation. The advanced transformation models enable predictions of not only strain-path sensitive, but also of strain-rate and temperature sensitive deformation of polycrystalline stainless steels (SSs). The deformation of constituent grains in SSs is modeled as a combination of anisotropic elasticity, crystallographic slip, and phase transformation, while the hardening is based on the evolution of dislocation density and explicit shifts in phase fractions. Such grain-scale deformation is implemented within the meso-scale elasto-plastic self-consistent (EPSC) homogenization model, which is coupled with the implicit finite element (FE) method to provide a constitutive response at each FE integration point for solving boundary value problems at the macro-scale. Parameters pertaining to the hardening and transformation models within FEEPSC are calibrated and validated on a suite of data including flow curves and phase fractions for monotonic compression, tension, and torsion as a function of strain-rate and temperature for wrought and additively manufactured (AM) SS304L. To illustrate the potential and accuracy of the integrated multi-level FE-EPSC simulation framework, geometry, mechanical response, phase fractions, and texture evolution are simulated during gas-gun impact deformation of a cylinder and quasi-static tension of a notched specimen made of AM SS304L. Details of the simulation framework, comparison between experimental and simulation results, and insights from the results are presented and discussed.
更多
查看译文
关键词
Phase transformations,Microstructures,Crystal plasticity,Additive manufacturing,304L steels
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要