Time-Print: Authenticating USB Flash Drives with Novel Timing Fingerprints

2022 IEEE Symposium on Security and Privacy (SP)(2022)

引用 6|浏览28
暂无评分
摘要
Universal Serial Bus (USB) ports are a ubiquitous feature in computer systems and offer a cheap and efficient way to provide power and data connectivity between a host and peripheral devices. Even with the rise of cloud and off-site computing, USB has played a major role in enabling data transfer between devices. Its usage is especially prevalent in high-security environments where systems are ‘air-gapped’ and not connected to the Internet. However, recent research has demonstrated that USB is not nearly as secure as once thought, with different attacks showing that modified firmware on USB mass storage devices can compromise a host system. While many defenses have been proposed, they require user interaction, advanced hardware support (incompatible with legacy devices), or utilize device identifiers that can be subverted by an attacker. In this paper, we present Time-Print, a novel timing-based fingerprinting method, for identifying USB mass storage devices. We create a fingerprint by timing a series of read operations from different locations on a drive, as the timing variations are unique enough to identify individual USB devices. Time-Print is low overhead, completely software-based, and does not require any extra or specialized hardware. To validate the efficacy of Time-Print, we examine more than 40 USB flash drives and conduct experiments in multiple authentication scenarios. The experimental results show that Time-Print can (1) identify known/unknown brand/model USB devices with greater than 99.5% accuracy, (2) identify seen/unseen devices of the same brand/model with 95% accuracy, and (3) classify USB devices from the same brand/model with an average accuracy of 98.7%.
更多
查看译文
关键词
USB,Side-channel,Authentication
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要