谷歌浏览器插件
订阅小程序
在清言上使用

Metabolic Recycling of Storage Lipids Promotes Squalene Biosynthesis in Yeast

Biotechnology for biofuels and bioproducts(2022)

引用 5|浏览14
暂无评分
摘要
Background Metabolic rewiring in microbes is an economical and sustainable strategy for synthesizing valuable natural terpenes. Terpenes are the largest class of nature-derived specialized metabolites, and many have valuable pharmaceutical or biological activity. Squalene, a medicinal terpene, is used as a vaccine adjuvant to improve the efficacy of vaccines, including pandemic coronavirus disease 2019 (COVID-19) vaccines, and plays diverse biological roles as an antioxidant and anticancer agent. However, metabolic rewiring interferes with inherent metabolic pathways, often in a way that impairs the cellular growth and fitness of the microbial host. In particular, as the key starting molecule for producing various compounds including squalene, acetyl-CoA is involved in numerous biological processes with tight regulation to maintain metabolic homeostasis, which limits redirection of metabolic fluxes toward desired products. Results In this study, focusing on the recycling of surplus metabolic energy stored in lipid droplets, we show that the metabolic recycling of the surplus energy to acetyl-CoA can increase squalene production in yeast, concomitant with minimizing the metabolic interferences in inherent pathways. Moreover, by integrating multiple copies of the rate-limiting enzyme and implementing N-degron-dependent protein degradation to downregulate the competing pathway, we systematically rewired the metabolic flux toward squalene, enabling remarkable squalene production (1024.88 mg/L in a shake flask). Ultimately, further optimization of the fed-batch fermentation process enabled remarkable squalene production of 6.53 g/L. Conclusions Our demonstration of squalene production via engineered yeast suggests that plant- or animal-based supplies of medicinal squalene can potentially be complemented or replaced by industrial fermentation. This approach will also provide a universal strategy for the more stable and sustainable production of high-value terpenes.
更多
查看译文
关键词
Lipid droplet,Metabolic recycling,Yeast,Terpene,Squalene,Metabolic engineering,Synthetic biology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要