Van der Waals epitaxial growth and optoelectronics of a vertical MoS 2 /WSe 2 p–n junction

Frontiers of Optoelectronics(2022)

引用 2|浏览11
暂无评分
摘要
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted extensive attention due to their unique electronic and optical properties. In particular, TMDs can be flexibly combined to form diverse vertical van der Waals (vdWs) heterostructures without the limitation of lattice matching, which creates vast opportunities for fundamental investigation of novel optoelectronic applications. Here, we report an atomically thin vertical p–n junction WSe 2 /MoS 2 produced by a chemical vapor deposition method. Transmission electron microscopy and steady-state photoluminescence experiments reveal its high quality and excellent optical properties. Back gate field effect transistor (FET) constructed using this p–n junction exhibits bipolar behaviors and a mobility of 9 cm 2 /(V·s). In addition, the photodetector based on MoS 2 /WSe 2 heterostructures displays outstanding optoelectronic properties ( R = 8 A/W, D * = 2.93 × 10 11 Jones, on/off ratio of 10 4 ), which benefited from the built-in electric field across the interface. The direct growth of TMDs p–n vertical heterostructures may offer a novel platform for future optoelectronic applications. Graphical Abstract
更多
查看译文
关键词
MoS2,WSe2,Chemical vapor deposition (CVD),Vertical heterostructure,Optoelectronic transistor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要