Study of Locking Compression Plate Through Biodegradable Implant

Muhammad Syawal Aiman Sulong,Ardiyanshah Syahrom,Zulfadzli Zakaria

Journal of Medical Device Technology(2022)

Cited 0|Views6
No score
Abstract
Orthopaedic implant biomechanics research is booming, especially in bone fixation. Fixation involves securing a plate to a broken bone. The femur fractured mostly. Long bone fractures can be difficult to cure despite technological and medical breakthroughs. This study analyses the performance and optimal screw arrangement for biodegradable locking compression plate. This study compares biodegradable bone plate materials to identify the best (Iron, Zinc and Magnesium). SolidWorks models fracture repair plates and fixes them in a normal walking condition to a mid-ship fracture. Further, finite element analysis was performed on models with homogeneous and isotropic bone and plate. Simulation was done using COMSOL programme and screws. Idealized poroelastic 3D FE femoral model with 5 mm fracture gap and plate-screw design. We saw stress and displacement. The minimal von Mises stress and deformation for 6 screws. Under pure zinc and magnesium load, the highest von Mises stress was 7.94 MPa and the maximum deformation was 0.08 mm, proving that iron was the best material. Based on finite element analysis, the LCP can offer mechanical stability for comminuted fractures, fixing the bone block and promoting bone healing.
More
Translated text
Key words
compression plate,locking
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined