Looking for a needle in a haystack: magnetotactic bacteria help in “rare biosphere” investigations

biorxiv(2022)

引用 1|浏览0
暂无评分
摘要
Studying the minor part of the uncultivated microbial majority (“rare biosphere”) is difficult even with modern culture-independent techniques. The enormity of microbial diversity creates particular challenges for investigating low-abundance microbial populations in soils. Strategies for selective sample enrichment to reduce community complexity can aid in studying the rare biosphere. Magnetotactic bacteria, apart from being a minor part of the microbial community, are also found in poorly studied bacterial phyla and certainly belong to a rare biosphere. The presence of intracellular magnetic crystals within magnetotactic bacteria allows for their significant enrichment using magnetic separation techniques for studies using a metagenomic approach. This work investigated the microbial diversity of a black bog soil and its magnetically enriched fraction. The poorly studied phylum representatives in the magnetic fraction were enriched compared to the original soil community. Two new magnetotactic species, Candidatus Liberimonas magnetica DUR002 and Candidatus Obscuribacterium magneticum DUR003, belonging to different classes of the relatively little-studied phylum Elusimicrobiota , were proposed. Their genomes contain clusters of magnetosome genes that differ from the previously described ones by the absence of genes encoding magnetochrome-containing proteins and the presence of unique Elusimicrobiota -specific genes, termed mae . The predicted obligately fermentative metabolism in DUR002 and lack of flagellar motility in the magnetotactic Elusimicrobiota broadens our understanding of the lifestyles of magnetotactic bacteria and raises new questions about the evolutionary advantages of magnetotaxis. The findings presented here increase our understanding of magnetotactic bacteria, soil microbial communities, and the rare biosphere. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
magnetotactic bacteria help
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要