Deposition of Chiral Heptahelicene Molecules on Ferromagnetic Co and Fe Thin-Film Substrates

NANOMATERIALS(2022)

引用 3|浏览17
暂无评分
摘要
The discovery of chirality-induced spin selectivity (CISS), resulting from an interaction between the electron spin and handedness of chiral molecules, has sparked interest in surface-adsorbed chiral molecules due to potential applications in spintronics, enantioseparation, and enantioselective chemical or biological processes. We study the deposition of chiral heptahelicene by sublimation under ultra-high vacuum onto bare Cu(111), Co bilayer nanoislands on Cu(111), and Fe bilayers on W(110) by low-temperature spin-polarized scanning tunneling microscopy/spectroscopy (STM/STS). In all cases, the molecules remain intact and adsorb with the proximal phenanthrene group aligned parallel to the surface. Three degenerate in-plane orientations on Cu(111) and Co(111), reflecting substrate symmetry, and only two on Fe(110), i.e., fewer than symmetry permits, indicate a specific adsorption site for each substrate. Heptahelicene physisorbs on Cu(111) but chemisorbs on Co(111) and Fe(110) bilayers, which nevertheless remain for the sub-monolayer coverage ferromagnetic and magnetized out-of-plane. We are able to determine the handedness of individual molecules chemisorbed on Fe(110) and Co(111), as previously reported for less reactive Cu(111). The demonstrated deposition control and STM/STS imaging capabilities for heptahelicene on Co/Cu(111) and Fe/W(110) substrate systems lay the foundation for studying CISS in ultra-high vacuum and on the microscopic level of single molecules in controlled atomic configurations.
更多
查看译文
关键词
chiral molecules, molecular deposition, ferromagnetic surfaces, adsorption geometry, STM
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要