Optimization of the excitation trajectory of particle gray wolf optimization algorithm

2022 IEEE International Conference on Mechatronics and Automation (ICMA)(2022)

引用 0|浏览1
暂无评分
摘要
Aiming at the excitation trajectory design in the identification of inertial parameters of industrial robots, this paper proposes a step-by-step identification and particle gray wolf optimisation algorithm (PSOGWO) to optimise the design of excitation trajectory parameters. First of all, the robot's minimum inertial parameter observation matrix is derived and established by Newton-Eura recursive method, and the observation matrix condition number criterion is used as the optimisation objective function; secondly, the particle gray wolf optimisation algorithm (PSOGWO) is introduced; finally, the periodic Fourier series that meets multi-constraint conditions is optimised and designed as the incentive trajectory using the particle gray wolf optimisation algorithm (PSOGWO). Experimental results show that the excitation trajectory designed with the proposed optimisation method can fully stimulate the dynamic characteristics of the robot, improve the anti-noise ability of parameter identification, and lay a foundation for accurately obtaining the dynamic parameters of the robot.
更多
查看译文
关键词
Industrial robot,Dynamic model,Parameter identification,Excitation trajectory,Particle Grey Wolf Optimisation Algorithm
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要