Automated volumetric assessment of pituitary adenoma

Endocrine(2023)

引用 0|浏览5
暂无评分
摘要
Purpose Assessment of pituitary adenoma (PA) volume and extent of resection (EOR) through manual segmentation is time-consuming and likely suffers from poor interrater agreement, especially postoperatively. Automated tumor segmentation and volumetry by use of deep learning techniques may provide more objective and quick volumetry. Methods We developed an automated volumetry pipeline for pituitary adenoma. Preoperative and three-month postoperative T1-weighted, contrast-enhanced magnetic resonance imaging (MRI) with manual segmentations were used for model training. After adequate preprocessing, an ensemble of convolutional neural networks (CNNs) was trained and validated for preoperative and postoperative automated segmentation of tumor tissue. Generalization was evaluated on a separate holdout set. Results In total, 193 image sets were used for training and 20 were held out for validation. At validation using the holdout set, our models (preoperative / postoperative) demonstrated a median Dice score of 0.71 (0.27) / 0 (0), a mean Jaccard score of 0.53 ± 0.21/0.030 ± 0.085 and a mean 95 th percentile Hausdorff distance of 3.89 ± 1.96./12.199 ± 6.684. Pearson’s correlation coefficient for volume correlation was 0.85 / 0.22 and −0.14 for extent of resection. Gross total resection was detected with a sensitivity of 66.67% and specificity of 36.36%. Conclusions Our volumetry pipeline demonstrated its ability to accurately segment pituitary adenomas. This is highly valuable for lesion detection and evaluation of progression of pituitary incidentalomas. Postoperatively, however, objective and precise detection of residual tumor remains less successful. Larger datasets, more diverse data, and more elaborate modeling could potentially improve performance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要