DepFast: Orchestrating Code of Quorum Systems

USENIX Annual Technical Conference (USENIX ATC)(2022)

引用 1|浏览17
Quorum systems (e.g., replicated state machines) are critical distributed systems. Building correct, high-performance quorum systems is known to be hard. A major reason is that the protocols in quorum systems lead to non-deterministic state changes and complex branching conditions based on different events (e.g., timeouts). Traditionally, these systems are built with an asynchronous coding style with event-driven callbacks, but often lead to "callback hell" that makes code hard to follow and maintain. Converting to synchronous coding styles (e.g., using coroutines) is challenging because of the complex branching conditions. In this paper, we present Dependably Fast (DepFast), an effective, expressive framework for developing quorum systems. DepFast provides a unique QuorumEvent abstraction to enable building quorum systems in a synchronous style. It also supports composition of multiple events, e.g., timeouts, different quorums. To evaluate DepFast, we use it to implement two quorum systems, Raft and Copilot. We show that complex quorum systems implemented by DepFast are easy to write and have high performance. Specifically, it takes 25%-35% fewer lines of code to implement Raft and Copilot using DepFast, and the DepFast-based implementations have comparable performance with the state-of-the-art systems.
AI 理解论文
Chat Paper