Metabolite profiling analysis of hepatitis B virus-induced liver cirrhosis patients with minimal hepatic encephalopathy using gas chromatography-time-of-flight mass spectrometry and ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry.

Biomedical chromatography : BMC(2023)

引用 0|浏览9
暂无评分
摘要
This study used gas chromatography-time-of-flight mass spectrometry (GC-TOFMS) and ultra-performance liquid chromatography-quadrupole TOFMS (UPLC-QTOFMS) metabonomic analytical techniques in combination with bioinformatics and pattern recognition analysis methods to analyze the serum metabolite profiling of hepatitis B virus (HBV)-induced liver cirrhosis patients with minimal hepatic encephalopathy (MHE), to find the specific biomarkers of MHE, to reveal the pathogenesis of MHE, and to determine a promising approach for early diagnosis of MHE. Serum samples of 100 normal controls (NC group), 29 HBV-induced liver cirrhosis patients with MHE (MHE group), and 24 HBV-induced liver cirrhosis patients without MHE [comprising 12 cases of compensated cirrhosis (CS group) and 12 cases of decompensated cirrhosis (DS group)] were collected and employed into GC-TOFMS and UPLC-QTOFMS platforms for serum metabolite detection; the outcome data were then analyzed using principal component analysis and orthogonal partial least squares-discriminant analysis (OPLS-DA). There were no significant differential metabolites between the NC group and the CS group. A series of key differential metabolites were detected. According to the variable influence in projection values and P-values, 60 small-molecule metabolites were considered to be dysregulated in the MHE group (compared to the NC group); 27 of these 60 dysregulated differential metabolites were considered to be the potential biomarkers (see Table 4, marked in bold); 66 small-molecule metabolites were considered to be dysregulated in the DS group (compared to the NC group); 34 of these 66 dysregulated differential metabolites were considered to be the potential biomarkers (see Table 5, marked in bold). According to the fold-change values, 9 of these 27 metabolites, namely valine, oxalic acid, erythro-sphingosine, 4,7,10,13,16,19-docosahexaenoic acid, isoleucine, allo-isoleucine, thyroxine, rac-octanoyl carnitine, and tocopherol (vitamin E), were downregulated in the MHE group (compared to the NC group); the other 18, namely adenine, glycochenodeoxycholic acid, fucose, allothreonine, glycohyocholic acid, glycoursodeoxycholic acid, tyrosine, taurocheno-deoxycholate, phenylalanine, 2-hydroxy-3-methyl-butanoic acid, hydroxyacetic acid, taurocholate, sorbitol, rhamnose, tauroursodeoxycholate, tolbutamide, pyroglutamic acid, and malic acid, were upregulated; 6 of these 34 metabolites were downregulated in the DS group (compared to the NC group), and the other 28 were upregulated, as shown in Table 5. (a) GC-TOFMS and UPLC-QTOFMS metabonomic analytical platforms can detect a range of metabolites in the serum; this might be of great help to study the pathogenesis of MHE and may provide a new approach for the early diagnosis of MHE. (b) Metabonomics analysis in combination with pattern recognition analysis might have great potential to distinguish the HBV-induced liver cirrhosis patients who have MHE from the normal healthy population and HBV-induced liver cirrhosis patients without MHE.
更多
查看译文
关键词
GC,metabonomics,minimal hepatic encephalopathy,orthogonal partial least squares-discriminant analysis,time-of-flight mass spectrometry,ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要