谷歌浏览器插件
订阅小程序
在清言上使用

Conditioned Medium from Human Uterine Cervical Stem Cells Regulates Oxidative Stress and Angiogenesis of Retinal Pigment Epithelial Cells

Ophthalmic research(2022)

引用 3|浏览12
暂无评分
摘要
Introduction: Retinal homeostasis is essential to avoid retinal pigment epithelium (RPE) damage resulting in photoreceptor death and blindness. Mesenchymal stem cells-based cell therapy could contribute to the maintenance of the retinal homeostasis. We have explored the effect of human uterine cervical stem cells (hUCESCs)-conditioned medium (hUCESC-CM) on RPE cells under oxidative stress condition. Methods: ARPE-19 cells were treated with hydrogen peroxide (H2O2) in the presence or absence of hUCESC-CM. qRT-PCR and Western blot were used to evaluate the expression of oxidative stress-related (HO-1, GCLC, and HSPB1) and vasculogenesis-related (VEGFA, PDGFA, and PDGFB) factors. Also, we assessed in vitro effects of hUCESC-CM on endothelial-cell (HUVEC) tube formation. Results: mRNA expression of HO-1, GCLC, HSPB1, VEGFA, PDGFA, and PDGFB were significantly increased in ARPE-19 cells treated with H2O2 + hUCESC-CM compared to cells treated with H2O2 only. Regarding the tube formation assay, HUVEC treated with supernatant from ARPE-19 cells treated with H2O2 + hUCESC-CM showed a significant increase in average vessel length, number of capillary-like junctions, and average of vessels area compared with HUVEC treated with supernatant from ARPE-19 cells treated with H2O2 only. Conclusion: Our results show potential therapeutic effects of hUCESC-CM on RPE, such as protection from damage by oxidative stress, stimulation of detoxifying genes, and a better vascularization.
更多
查看译文
关键词
Conditioned medium,Secretome,Retinal pigment epithelium,Oxidative stress,Angiogenesis,Human uterine cervical stem cells,Mesenchymal stem cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要