The Effect of an Irradiation-Induced Recombination Suppressing Inversion on the Genetic Stability and Biological Quality of a White Eye-Based Aedes aegypti Genetic Sexing Strain

INSECTS(2022)

引用 0|浏览6
暂无评分
摘要
Simple Summary Aedes aegypti is a vector of viruses transmitting diseases such as dengue, chikungunya, Zika, and yellow fever. Current vector population control methods, based mainly on insecticides, are ineffective and raise concerns due to their negative impact on the environment and human health. In this frame, the sterile insect technique (SIT), which relies on the mass production and release of sterile males to reduce fertile crosses in the natural population, has recently gained increased interest as an environment-friendly, species-specific method. Sterile males are the 'active' component of SIT, however, for SIT to be effectively applied in mosquitoes, the efficient elimination of females from the male release batch is a prerequisite, since they are blood-feeders and transmit pathogenic microorganisms. To this end, developing and utilizing genetic sexing strains (GSS) that facilitate sex separation are highly desirable. However, GSS must be stable during rearing and competitive in the field to be considered for operational release projects. Here, we present our findings regarding the genetic stability and biological quality of an Aedes aegypti GSS that is based on the white eye mutation. Moreover, we discuss the effects of the incorporation of a recombination-suppressing inversion on the strain's biological quality and on important fitness parameters. Aedes aegypti is the primary vector of diseases such as dengue, chikungunya, Zika fever, and yellow fever. The sterile insect technique (SIT) has been proposed as a species-specific and environment-friendly tool for the suppression of mosquito vector populations as a major component of integrated vector management strategies. As female mosquitoes are blood-feeders and may transmit pathogenic microorganisms, mosquito SIT depends on the release of sterile males. Genetic sexing strains (GSS) can be used for the efficient and robust separation of males from females. Two Ae. aegypti GSS were recently developed by exploiting eye colour mutations, resulting in the Red-eye GSS (RGSS) and the White-eye GSS (WGSS). In this study, we compared two WGSS, with and without the chromosomal inversion 35 (Inv35), and evaluated their biological quality, including genetic stability. Our results suggest that the WGSS/Inv35 presents a low recombination rate and long-term genetic stability when recombinants are removed from the colony (filtering) and a slow accumulation of recombinants when they are not removed from the colony (non-filtering). The two strains were similar with respect to fecundity, pupal and adult recovery rates, pupation curve, and pupal weight. However, differences were detected in fertility, survival rate of females, and flight ability of males. The WGSS/Inv35 presented lower fertility, higher survival rate of females, and better flight ability of males compared to the WGSS.
更多
查看译文
关键词
sterile insect technique,vector control,dengue,Zika,chromosomal inversion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要