SSiT: Saliency-guided Self-supervised Image Transformer for Diabetic Retinopathy Grading.
IEEE Journal of Biomedical and Health Informatics(2024)
Southern Univ Sci & Technol | Univ British Columbia
Abstract
Self-supervised Learning (SSL) has been widely applied to learn image representations through exploiting unlabeled images. However, it has not been fully explored in the medical image analysis field. In this work, Saliency-guided Self-Supervised image Transformer (SSiT) is proposed for Diabetic Retinopathy (DR) grading from fundus images. We novelly introduce saliency maps into SSL, with a goal of guiding self-supervised pre-training with domain-specific prior knowledge. Specifically, two saliency-guided learning tasks are employed in SSiT: (1) Saliency-guided contrastive learning is conducted based on the momentum contrast, wherein fundus images' saliency maps are utilized to remove trivial patches from the input sequences of the momentum-updated key encoder. Thus, the key encoder is constrained to provide target representations focusing on salient regions, guiding the query encoder to capture salient features. (2) The query encoder is trained to predict the saliency segmentation, encouraging the preservation of fine-grained information in the learned representations. To assess our proposed method, four publicly-accessible fundus image datasets are adopted. One dataset is employed for pre-training, while the three others are used to evaluate the pre-trained models' performance on downstream DR grading. The proposed SSiT significantly outperforms other representative state-of-the-art SSL methods on all downstream datasets and under various evaluation settings. For example, SSiT achieves a Kappa score of 81.88% on the DDR dataset under fine-tuning evaluation, outperforming all other ViT-based SSL methods by at least 9.48%.
MoreTranslated text
Key words
Diabetic retinopathy,fundus image,saliency map,self-supervised learning,vision transformer
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
BMC MEDICAL INFORMATICS AND DECISION MAKING 2024
被引用1
Multi-scale Cross-Attention Transformer Encoder for Event Classification
JOURNAL OF HIGH ENERGY PHYSICS 2024
被引用1
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest